Core to Core to Core: Design Trade Offs

AMD’s approach to these big processors is to take a small repeating unit, such as the 4-core complex or 8-core silicon die (which has two complexes on it), and put several on a package to get the required number of cores and threads. The upside of this is that there are a lot of replicated units, such as memory channels and PCIe lanes. The downside is how cores and memory have to talk to each other.

In a standard monolithic (single) silicon design, each core is on an internal interconnect to the memory controller and can hop out to main memory with a low latency. The speed between the cores and the memory controller is usually low, and the routing mechanism (a ring or a mesh) can determine bandwidth or latency or scalability, and the final performance is usually a trade-off.

In a multiple silicon design, where each die has access to specific memory locally but also has access to other memory via a jump, we then come across a non-uniform memory architecture, known in the business as a NUMA design. Performance can be limited by this abnormal memory delay, and software has to be ‘NUMA-aware’ in order to maximize both the latency and the bandwidth. The extra jumps between silicon and memory controllers also burn some power.

We saw this before with the first generation Threadripper: having two active silicon dies on the package meant that there was a hop if the data required was in the memory attached to the other silicon. With the second generation Threadripper, it gets a lot more complex.

On the left is the 1950X/2950X design, with two active silicon dies. Each die has direct access to 32 PCIe lanes and two memory channels each, which when combined gives 60/64 PCIe lanes and four memory channels. The cores that have direct access to the memory/PCIe connected to the die are faster than going off-die.

For the 2990WX and 2970WX, the two ‘inactive’ dies are now enabled, but do not have extra access to memory or PCIe. For these cores, there is no ‘local’ memory or connectivity: every access to main memory requires an extra hop. There is also extra die-to-die interconnects using AMD’s Infinity Fabric (IF), which consumes power.

The reason that these extra cores do not have direct access is down to the platform: the TR4 platform for the Threadripper processors is set at quad-channel memory and 60 PCIe lanes. If the other two dies had their memory and PCIe enabled, it would require new motherboards and memory arrangements.

Users might ask, well can we not change it so each silicon die has one memory channel, and one set of 16 PCIe lanes? The answer is that yes, this change could occur. However the platform is somewhat locked in how the pins and traces are managed on the socket and motherboards. The firmware is expecting two memory channels per die, and also for electrical and power reasons, the current motherboards on the market are not set up in this way. This is going to be an important point when get into the performance in the review, so keep this in mind.

It is worth noting that this new second generation of Threadripper and AMD’s server platform, EPYC, are cousins. They are both built from the same package layout and socket, but EPYC has all the memory channels (eight) and all the PCIe lanes (128) enabled:

Where Threadripper 2 falls down on having some cores without direct access to memory, EPYC has direct memory available everywhere. This has the downside of requiring more power, but it offers a more homogenous core-to-core traffic layout.

Going back to Threadripper 2, it is important to understand how the chip is going to be loaded. We confirmed this with AMD, but for the most part the scheduler will load up the cores that are directly attached to memory first, before using the other cores. What happens is that each core has a priority weighting, based on performance, thermals, and power – the ones closest to memory get a higher priority, however as those fill up, the cores nearby get demoted due to thermal inefficiencies. This means that while the CPU will likely fill up the cores close to memory first, it will not be a simple case of filling up all of those cores first – the system may get to 12-14 cores loaded before going out to the two new bits of silicon.

The AMD Threadripper 2990WX 32-Core and 2950X 16-Core Review Precision Boost 2, Precision Boost Overdrive, and StoreMI
Comments Locked

171 Comments

View All Comments

  • NevynPA - Tuesday, August 14, 2018 - link

    Will there be results for WX chips in 'Game Mode' at various core/thread counts (6/12,8/16,12/24)?
  • jospoortvliet - Saturday, August 18, 2018 - link

    It has no game mode. Don't bother buying it for games...
  • jts888 - Tuesday, August 14, 2018 - link

    What is the methodology used for the core/uncore power breakdown? Where was a physical measurement or software reading taken, and what were the loads used?

    Furthermore, Zen uses single-ended signaling for IF links with alleged even further reduced power draw when in transient no-send states, so there should be at least two clearly explained tests done (i.e., both high and low inter-thread/core/sock bandwidth, with NUMA allocations detailed) before interconnect power breakdowns can be credibly presented as flat metrics of the architectures investigated.

    Although this review is still a work in progress, it needs some substantial improvements in clarity given the strength of the claims made and conclusions drawn.
  • ktmrc8 - Thursday, August 16, 2018 - link

    Let me add my voice to those asking for further elaboration on this point. I think it's very interesting, but I would like enough detail so that I could possibly replicate your data. In particular, I the charts showing power consumption decreasing as number of loaded threads increase counter-intuitive (at least for me!). Thanks.
  • Sahrin - Tuesday, August 14, 2018 - link

    The link power is a problem, but I get the feeling that nowhere near the power optimization went into IF as went into the cores.
  • notfeelingit - Tuesday, August 14, 2018 - link

    What's up with the 2950X crazy low score for the PCMark10 Startup Test? Is that repeatable?
  • crotach - Tuesday, August 14, 2018 - link

    So, 2700X looks like a clear winner here?
  • GreenReaper - Wednesday, August 15, 2018 - link

    For the average consumer, yes. It's a sweet spot. Heck, most would do fine with an APU. You don't expect a truck to win a race. Small engines tend to be more efficient; they're just limited in raw power.
  • witeko - Tuesday, August 14, 2018 - link

    hi, can we have some tests regarding data processing (spark, dask), machine learning (lightGBM/xgboost training), deep learning (i know there are GPUs) just to get a feeling (there are pre-made benchmarks for tensorflow) ? And also some reviews point to win10 vs linux differences for example in the zip test.
  • farmergann - Tuesday, August 14, 2018 - link

    Really should have included the Epyc 7401p as it's a serious contender in this price range (only $1,000).

Log in

Don't have an account? Sign up now