AMD EPYC Milan Review Part 2: Testing 8 to 64 Cores in a Production Platform
by Andrei Frumusanu on June 25, 2021 9:30 AM ESTTest Bed and Setup - Compiler Options
For the rest of our performance testing, we’re disclosing the details of the various test setups:
AMD - Dual EPYC 7763 / 75F3 / 7443 / 7343 / 72F3
For today’s review in terms of now performance figure, we’re now using GIGABYTE’s new MZ72-HB0 rev.3.0 board as the primary test platform for the EPYC 7763, 75F3, 7443, 7343 and 72F3. The system is running under full default settings, meaning performance or power determinism as configured by AMD in their default SKU fuse settings.
CPU | 2x AMD EPYC 7763 (2.45-3.500 GHz, 64c, 256 MB L3, 280W) / 2x AMD EPYC 75F3 (3.20-4.000 GHz, 32c, 256 MB L3, 280W) / 2x AMD EPYC 7443 (2.85-4.000 GHz, 24c, 128 MB L3, 200W) / 2x AMD EPYC 7343 (3.20-3.900 GHz, 16c, 128 MB L3, 190W) / 2x AMD EPYC 72F3 (3.70-4.100 GHz, 8c, 256MB L3, 180W) |
RAM | 512 GB (16x32 GB) Micron DDR4-3200 |
Internal Disks | Crucial MX300 1TB |
Motherboard | GIGABYTE MZ72-HB0 (rev. 3.0) |
PSU | EVGA 1600 T2 (1600W) |
Software wise, we ran Ubuntu 20.10 images with the latest release 5.11 Linux kernel. Performance settings both on the OS as well on the BIOS were left to default settings, including such things as a regular Schedutil based frequency governor and the CPUs running performance determinism mode at their respective default TDPs unless otherwise indicated.
AMD - Dual EPYC 7713 / 7662
Due to not having access to the 7713 for this review, we’re picking up the older test numbers of the chip on AMD’s Daytona platform. We also tested the Rome EPYC 7662 – these latter didn’t exhibit any issues in terms of their power behaviour.
CPU | 2x AMD EPYC 7713 (2.00-3.365 GHz, 64c, 256 MB L3, 225W) / 2x AMD EPYC 7662 (2.00-3.300 GHz, 64c, 256 MB L3, 225W) |
RAM | 512 GB (16x32 GB) Micron DDR4-3200 |
Internal Disks | Varying |
Motherboard | Daytona reference board: S5BQ |
PSU | PWS-1200 |
AMD - Dual EPYC 7742
Our local AMD EPYC 7742 system, due to the aforementioned issues with the Daytona hardware, is running on a SuperMicro H11DSI Rev 2.0.
CPU | 2x AMD EPYC 7742 (2.25-3.4 GHz, 64c, 256 MB L3, 225W) |
RAM | 512 GB (16x32 GB) Micron DDR4-3200 |
Internal Disks | Crucial MX300 1TB |
Motherboard | SuperMicro H11DSI0 |
PSU | EVGA 1600 T2 (1600W) |
As an operating system we’re using Ubuntu 20.10 with no further optimisations. In terms of BIOS settings we’re using complete defaults, including retaining the default 225W TDP of the EPYC 7742’s, as well as leaving further CPU configurables to auto, except of NPS settings where it’s we explicitly state the configuration in the results.
The system has all relevant security mitigations activated against speculative store bypass and Spectre variants.
Intel - Dual Xeon Platinum 8380
For our new Ice Lake test system based on the Whiskey Lake platform, we’re using Intel’s SDP (Software Development Platform 2SW3SIL4Q, featuring a 2-socket Intel server board (Coyote Pass).
The system is an airflow optimised 2U rack unit with otherwise little fanfare.
Our review setup solely includes the new Intel Xeon 8380 with 40 cores, 2.3GHz base clock, 3.0GHz all-core boost, and 3.4GHz peak single core boost. That’s unusual about this part as noted in the intro, it’s running at a default 205W TDP which is above what we’ve seen from previous generation non-specialised Intel SKUs.
CPU | 2x Intel Xeon Platinum 8380 (2.3-3.4 GHz, 40c, 60MB L3, 270W) |
RAM | 512 GB (16x32 GB) SK Hynix DDR4-3200 |
Internal Disks | Intel SSD P5510 7.68TB |
Motherboard | Intel Coyote Pass (Server System S2W3SIL4Q) |
PSU | 2x Platinum 2100W |
The system came with several SSDs including Optane SSD P5800X’s, however we ran our test suite on the P5510 – not that we’re I/O affected in our current benchmarks anyhow.
As per Intel guidance, we’re using the latest BIOS available with the 270 release microcode update.
Intel - Dual Xeon Platinum 8280
For the older Cascade Lake Intel system we’re also using a test-bench setup with the same SSD and OS image as on the EPYC 7742 system.
Because the Xeons only have 6-channel memory, their maximum capacity is limited to 384GB of the same Micron memory, running at a default 2933MHz to remain in-spec with the processor’s capabilities.
CPU | 2x Intel Xeon Platinum 8280 (2.7-4.0 GHz, 28c, 38.5MB L3, 205W) |
RAM | 384 GB (12x32 GB) Micron DDR4-3200 (Running at 2933MHz) |
Internal Disks | Crucial MX300 1TB |
Motherboard | ASRock EP2C621D12 WS |
PSU | EVGA 1600 T2 (1600W) |
The Xeon system was similarly run on BIOS defaults on an ASRock EP2C621D12 WS with the latest firmware available.
Ampere "Mount Jade" - Dual Altra Q80-33
The Ampere Altra system we’re using the provided Mount Jade server as configured by Ampere. The system features 2 Altra Q80-33 processors within the Mount Jade DVT motherboard from Ampere.
In terms of memory, we’re using the bundled 16 DIMMs of 32GB of Samsung DDR4-3200 for a total of 512GB, 256GB per socket.
CPU | 2x Ampere Altra Q80-33 (3.3 GHz, 80c, 32 MB L3, 250W) |
RAM | 512 GB (16x32 GB) Samsung DDR4-3200 |
Internal Disks | Samsung MZ-QLB960NE 960GB Samsung MZ-1LB960NE 960GB |
Motherboard | Mount Jade DVT Reference Motherboard |
PSU | 2000W (94%) |
The system came preinstalled with CentOS 8 and we continued usage of that OS. It’s to be noted that the server is naturally Arm SBSA compatible and thus you can run any kind of Linux distribution on it.
The only other note to make of the system is that the OS is running with 64KB pages rather than the usual 4KB pages – this either can be seen as a testing discrepancy or an advantage on the part of the Arm system given that the next page size step for x86 systems is 2MB – which isn’t feasible for general use-case testing and something deployments would have to decide to explicitly enable.
The system has all relevant security mitigations activated, including SSBS (Speculative Store Bypass Safe) against Spectre variants.
The system has all relevant security mitigations activated against the various vulnerabilities.
Compiler Setup
For compiled tests, we’re using the release version of GCC 10.2. The toolchain was compiled from scratch on both the x86 systems as well as the Altra system. We’re using shared binaries with the system’s libc libraries.
58 Comments
View All Comments
DannyH246 - Thursday, July 1, 2021 - link
lol - no need to be subtle about it. www.IntelTech.com has been doing this for years.Qasar - Thursday, July 1, 2021 - link
hilarious, go back to wccftech then dannywhatthe123 - Friday, June 25, 2021 - link
good god man, the review quite literally posts hard numbers of epyc simply thrashing xeon in performance even on a per core basis, and you think they're worried that intel will retaliate against them if they don't say something nice about one corner of a segment of performance?what is it about technology that attracts cultists?
Threska - Saturday, June 26, 2021 - link
There's a reason the PCMasterRace forum exists.msroadkill612 - Sunday, June 27, 2021 - link
"Cultists" - I like it :)So true, & on many levels. I see strangely neurotic behaviour from such an allegedly smart & rational demographic.
As a group, they are prone to be great at rattling off streams of presumably accurate numbers and jargon, but arrive at childishly naive conclusions, & ask the wrong questions based plain wrong premises.
devione - Sunday, June 27, 2021 - link
Jesus Christ man. Grow some fucking balls. If you're going to call out Anandtech for being biased at least be straightforward and frank. No need to write an essay trying to couch and justify and be obtuse about itMakste - Monday, July 5, 2021 - link
LmaoOxford Guy - Friday, June 25, 2021 - link
What are the RAM timings? I don’t see that information in the charts.Andrei Frumusanu - Saturday, June 26, 2021 - link
These are standardised PC4-3200AA-RB2-12 sticks, running at JEDEC timings.https://www.micron.com/products/dram-modules/rdimm...
Oxford Guy - Monday, June 28, 2021 - link
Thank you. And the other systems tested?