The entire backside of the N900 is the removable battery, SIM, and microSD slot cover. It snaps on and snaps off; there's no sliding mechanism, just a small place to get your fingernail under and pry the whole thing off with. That isn't to say that the back isn't snug, it's just a bit unnerving to rip the back off the N900 the first time, but that's really how you do it.

It's also on the back that the sliding camera cover and integrated kickstand reside. The kickstand isn't perfect; since it's off-center if you put the phone down in landscape mode as intended there's a bit of a tendency for the device to tripod on the other side if you tap on the screen. It's clear that this is really meant as an aide to viewing videos, say on a transatlantic flight.

 
Nokia has included Carl Zeiss optics for some time now on their phones, and the N900 carries that same branding. Beneath the 5 megapixel marking is '2.8/5.2', likely meaning the camera has a 5.2 mm effective focal length F/2.8 lens system. It's interesting that Nokia puts the word 'tessar' next to these two; it's a familiar name for those who know the famous camera objective optical system. That said, it's unlikely the optical system in the N900's camera is anywhere near a traditional 'tessar' lens, as smartphone cameras use acrylic injection molded aspheric lenses. It's entirely likely Zeiss has just named this system with its Tessar brand, as it's now a trademark of German optics company. Sliding the camera cover open while the device is on instantly launches the camera application. There's also a powerful dual LED flash.
 
 
Kickstand extended

On the front is the resistive topped 800x480 3.5 inch LCD, and up at the very top in the center is the small speaker not much bigger than a grain of rice for making phone calls. I was a bit worried at first that volume would suffer, but it's on par with every other handset I've used. Off to the right of that is the front-facing VGA camera, and on the far left side is the IR proximity sensor.

Look carefully, in the top left is the front facing camera. Down below it is the proximity sensor, and then the speaker port.
The Hardware: Nokia N900 Two radically different keyboards
Comments Locked

68 Comments

View All Comments

  • Wadzii22 - Friday, June 11, 2010 - link

    Out of curiosity I ran linpack and Benchmark pi on my droid that's oc'd to 1ghz

    my benchmark pi score was 1280 and linpack gives me 17.24 mflops
  • strikeback03 - Friday, June 11, 2010 - link

    Did you run them stock? As those numbers seem to be a ~4x improvement over what is shown here, which seems odd given the ~2x increase in clockspeed.
  • Wadzii22 - Wednesday, June 16, 2010 - link

    with the phone completely stock my scores were basically the same as whats in the original article.
  • jamyryals - Friday, June 11, 2010 - link

    Please continue this type of in depth comparison with current and future hardware. PC hardware is all well and good, but it's all so fast now the mobile space is a much more interesting battle. Not to mention with how fast things are evolving there is the opportunity for a lot of content.
  • Ratman6161 - Friday, June 11, 2010 - link

    For eample, my droid purchased in early April came out of the box running at 600 MHz (though now it actually runs at up to 900 Mhz). My wife got hers in early June and hers is 600 MHz too and also came out of the box with Android 2.1 already on it.
  • Wadzii22 - Friday, June 11, 2010 - link

    For whatever reason, setcpu always sees a stock droid's max at 600, but they do run at 550. I just got a new one yesterday after bricking my old droid, it showed the same thing.
  • CharonPDX - Friday, June 11, 2010 - link

    Nokia was the originator of the "sell unsubsidized smartphones direct" model, years before Apple or Google. You could get a Nokia N80 at CompUSA completely unlocked for $800 in 2006, a year before the unsubsidized iPhone.
  • Stas - Friday, June 11, 2010 - link

    0.1 build with fixed WiFi and maps.

    LinPack - 12.2 (twelve point two)MFLOPS
    Engadget.com loads in 20 sec (default browser)

    'nuff said.
  • Stas - Friday, June 11, 2010 - link

    forgot to mention. the CPU is at 800Mhz. I've had it up at 900Mhz with bare Android build (leaked 2.2) and the performance seems no different, but no numbers, sorry.
  • milli - Saturday, June 12, 2010 - link

    That's pretty wrong what you're saying there.
    Qualcomm didn't even license the A8 (nor will they ever).
    What they did license is the ARMv7 instruction set (and that's a huge difference). With that they made a custom implementation of the ARMv7 architecture. (BTW Qualcomm already stated in 2005 that they're an architectural licensee for ARM’s ARMv7 instruction set)

    There are many differences between Scorpion and A8.
    I'll quote from a certain article since i can't say it better:
    'Although Scorpion and Cortex-A8 have many similarities, based on the information released by Qualcomm, the two cores differ in a number of interesting ways. For example, while the Scorpion and Cortex-A8 NEON implementations execute the same SIMD-style instructions, Scorpion’s implementation can process128 bits of data in parallel, compared to 64 bits on Cortex-A8. Half of Scorpion’s SIMD data path can be shut down to conserve power. Scorpion’s pipeline is deeper: It has a 13-stage load/store pipeline and two integer pipelines—one of which is 10 stages and can perform simple arithmetic operations (such as adds and subtracts) while the other is 12 stages and can perform both simple and more complex arithmetic, like MACs. Scorpion also has a 23-stage floating-point/SIMD pipeline, and unlike on Cortex-A8, VFPv3 operations are pipelined. Scorpion uses a number of other microarchitectural tweaks that are intended to either boost speed or reduce power consumption. (Scorpion’s architects previously designed low-power, high-performance processors for IBM.) The core supports multiple clock and voltage domains to enable additional power savings."

    "Qualcomm claims that Scorpion will have power consumption of roughly 200 mW at 600 MHz (this figure includes leakage current, though its contribution is typically minimal in low-power processes). In comparison, ARM reports on its website that a Cortex-A8 in a 65 nm LP process consumes .59 mW/MHz (excluding leakage), which translates into about 350 mW at 600 MHz."

    With that said, i don't understand where the misconception about the Scorpion being an A8 started. Even Qualcomm states clearly on their own website that Scorpion is not licensed from ARM. They also state that they invested hundred of millions in creating their own core based on the ARMv7 instruction set.
    I hope now all the staff from Anand will stop saying that there's an A8 inside of Snapdragon. Or maybe you should even clarify that with a small article.

Log in

Don't have an account? Sign up now