Overclocking

With the GTX 590 NVIDIA found themselves with a bit of a PR problem. Hardcore overclockers had managed to send their GTX 590s to a flaming death, which made the GTX 590 look bad and required that NVIDIA lock down all voltage control so that no one else could repeat the feat. The GTX 590 was a solid card at stock, but NVIDIA never designed it for overvolting, and indeed I’m not sure you could even say it was designed for overclocking since it was already running at a 365W TDP.

Since that incident NVIDIA has taken a much harder stance on overvolting, which we first saw with the GTX 680. The reference GTX 680 could not be overvolted, with voltage options limited to whatever voltage the top GPU boost bin used (typically 1.175v). This principle will be continuing with the GTX 690; there will not be any overvolting options.

However this is not to say that the GTX 690 isn’t built for overclocking. The GTX 680 still has some overclocking potential thanks to some purposeful use of design headroom, and the GTX 690 is going to be the same story. In fact it’s much the same story as with AMD’s Radeon HD 5970 and 6990, both of which shipped in configurations that kept power consumption at standard levels while also offering modes that unlocked overclocking potential in exchange for greater power consumption (e.g. AWSUM). As we’ve previously mentioned the GTX 690 is designed to be able to handle up to 375W even though it ships in a 300W configuration, and that 75W is our overclocking headroom.

NVIDIA will be exposing the GTX 690’s overclocking options through a combination of power targets and clock offsets, just as with the GTX 680. This in turn means that the GTX 690 effectively has two overclocking modes:

  1. Power target overclocking. By just raising the power target (max +35%) you can increase how often the GTX 690 can boost and how frequently it can hit its max boost bin. By adjusting the power target performance will only increase in games/applications that are being held back by NVIDIA’s power limiter, but in return this is easy mode overclocking as all of the GPU boost bins are already qualified for stability. In other words, this is the GTX 690’s higher performance, higher power 375W mode.
  2. Power target + offset overclocking. By using clock offsets it’s possible to further raise the performance of the GTX 690, and to do so across all games and applications. The lack of overvolting support means that there isn’t a ton of headroom for the offset, but as it stands NVIDIA’s clocks are conservative for power purposes and Kepler is clearly capable of more than 915MHz/1019MHz. This of course will require testing for stability, and it should be noted that because NVIDIA’s GPU boost bins already go so high over the base clock that it won’t take much to be boosting into 1.2GHz+.

NVIDIA’s goal with the GTX 690 was not just to reach GTX 680 SLI performance, but also match the GTX 680’s overclocking capabilities. We’ll get to our full results in our overclocking performance section, but for the time being we’ll leave it at this: we hit 1040MHz base, 1183MHz boost, and 7GHz memory on our GTX 690; even without overvolting it’s a capable overclocker.

Meet The GeForce GTX 690 GeForce Experience & The Test
Comments Locked

200 Comments

View All Comments

  • JPForums - Thursday, May 3, 2012 - link

    Sadly, it is a very uncommon resolution for new monitors. Almost every 22-24" monitor your buy today is 1080p instead of 1200p. :(


    Not mine. I'm running a 1920x1200 IPS.
    1920x1200 is more common in the higher end monitor market.
    A quick glance at newegg shows 16 1920x1200 models with at 24" alone. (starting at $230)
    Besides, I can't imagine many buy a $1000 dollar video card and pair it with a single $200 display.

    It makes more sense to me to check 1920x1200 performance than 1920x1080 for several reasons:
    1) 1920x1200 splits the difference between 16x10 and 25x14 or 25x16 better than 1920x1080.
    1680x1050 = ~1.7MP
    1920x1080=~2MP
    1920x1200=~2.3MP
    2560*1440=~3.7MP
    2560x1600=~4MP

    2) People willing to spend $1000 for a video card are generally in a better position to get a nicer monitor. 1920x1200 monitors are more common at higher prices.

    3) They already have three of them around to run 5760x1200. Why go get another monitor?

    Opinionated Side Points:
    Movies transitioned to resolutions much wider than 1080P long ago. A little extra black space really makes no difference.
    1920x1200 is a perfectly valid resolution. If Nvidia is having trouble with it, I want to know. When particular resolutions don't scale properly, it is probable that there is either a bug or shenanigans are at work in the more common resolutions.
    I prefer using 1920x1200 as a starting point for moving to triple screen setups. I already thing 1920x1080 looks squashed, so 5760x1080 looks downright flattened. Also 3240x1920 just doesn't look very surround to me (3600x1920 seems borderline surround).
  • CeriseCogburn - Saturday, May 5, 2012 - link

    There are only 18 models available in all of newegg with 1920x1200 resolution - only 6 of those are under $400, they are all over $300.
    +
    There are 242 models available in 1920x1080, with nearly 150 models under $300.
    You people are literally a bad joke when it comes to even a tiny shred of honesty.
  • Lerianis - Sunday, May 6, 2012 - link

    I don't know about the 'sadly' there in all honesty. I personally like 1920*1080 better than *1200, because nearly everything is done in the former resolution.
  • Stuka87 - Thursday, May 3, 2012 - link

    Who buys a GTX690 to play on a 1080P display? Even a 680 is overkill for 1080. You can save a lot of money with a 7870 and still run everything out there.
  • vladanandtechy - Thursday, May 3, 2012 - link

    Stuka i agree with you.....but when you buy such a card....you think in the future....5 maybe 6 years....and i can't gurantee that we will do gaming in 1080p then:)....
  • retrospooty - Thursday, May 3, 2012 - link

    "Stuka i agree with you.....but when you buy such a card....you think in the future....5 maybe 6 years....and i can't gurantee that we will do gaming in 1080p then:)...."

    I have to totally disagree with that. Anyone that pays $500+ for a video card is a certain "type" of buyer. That type of buyer will NEVER wait 5-6 years for an upgrade. That guy is getting the latest and greatest of every other generation, if not every generation of cards.
  • vladanandtechy - Thursday, May 3, 2012 - link

    You shouldn't "totally disagree".......meet me...."the exception"....i am the type of buyer who is looking for the "long run"....but i must confess....if i could....i would be the type of buyer you describe....cya
  • orionismud - Thursday, May 3, 2012 - link

    retrospooty and I mean you no disrespect, but if you're spending $500 and buying for the "long run," you're doing it wrong.

    If you had spent $250, you could have 80% of the performance for 2.5 years, then spend another $250 and have 200% of the performance for the remaining 2.5 years.
  • von Krupp - Thursday, May 3, 2012 - link

    Don't say that.

    I bought two (2) HD 7970s on the premise that I'm not going to upgrade them for a good long while. At least four years, probably closer to six. I ran from 2005 to 2012 with a GeForce 7800GT just fine and my single core AMD CPU was actually the larger reason why I needed to move on.

    Now granted, I also purchased a snazzy U2711 just so the power of these cards wouldn't go to waste (though I'm quite CPU-bound by this i7-3820), but I don't consider dropping AA in future titles to maintain performance to be that big of a loss; I already only run with 8x AF because , frankly, I'm too busy killing things to notice otherwise. I intend to drive this rig for the same mileage. It costs less for me to buy the best of the best at the time of purchase for $1000 and play it into the ground than it is to keep buying $350 cards to barely keep up every two years, all over a seven year duration. Since I now have this fancy 2560x1440 resolution and want to use it, the $250-$300 offerings don't cut it. And the, don't forget to adjust for inflation year over year.

    So yes, I'm going to be waiting between 4 and 6 years to upgrade. Under certain conditions, buying the really expensive stuff is as much of an economical move as it is a power grab. Not all of us who build $3000 computers do it on a regular basis.

    P.S. Thank you consoles for extending PC hardware life cycles. Makes it easier to make purchases.
  • Makaveli - Thursday, May 3, 2012 - link

    lol agree let put a $500 videocard with a $200 TN panel at 1920x1080 umm ya no!

Log in

Don't have an account? Sign up now