Recap: 802.11ac Wireless Networking

We’ve had quite a few major wireless networking standards over the years, and while some have certainly been better than others, I have remained a strong adherent of wired networking. I don’t expect I’ll give up the wires completely for a while yet, but Western Digital and Linksys sent me some 802.11ac routers for testing, and for the first time in a long time I’m really excited about wireless.

I’m not a good representative of normal PC users, but it has been a long time, relatively speaking, since we first saw Draft-N wireless options—Gary Key (now with ASUS) wrote about it what seems like an eternity ago, and in Internet time I suppose seven years is pretty darn close. Granted, 802.11ac has really been “done” for about two years now, but the first laptops to arrive with 11ac adapters are less than a month old—up until now, 11ac has been almost exclusively used for routers and bridges.

Before I get into a few performance specifics of 802.11ac testing, let me start by saying what is bad with 802.11n. The single biggest issue for me is the lack of quality implementations in so many of our devices. If you look at Apple’s MacBook Pro offerings, they’ve all been 3x3:3 MIMO for several years, offering connection speeds of up to 450Mbps. The problem with that “up to 450Mbps” is that it’s influenced by several factors.

Of course you need to know what sort of signal quality you have, but by far the bigger issue is this: are you talking about 2.4GHz 802.11n or 5GHz 802.11n? If you’re talking about the former, you can pretty much throw any thoughts of 450Mbps out the window. The bigger problem with “up to 450Mbps” is that the vast majority of laptops and routers don’t offer such support; Apple's 3x3:3 dual-band implementation is better than 99% of Windows laptops (and yes, I just made up that statistic).

About a year ago, I reviewed a router and repeater from Amped Wireless and found them to be good if not exceptional products. Compared to most of the wireless solutions people end up with, they were a breath of fresh air and I’ve actually been using them for the past year with very few complaints. On the other hand, I’ve had dozens of laptops come and go during the same time frame. Can you guess what the most common configuration is, even on more expensive laptops? If you said “single-band 2.4GHz 1x1:1”, give yourself a cookie.

We’re thankfully starting to see more laptops with dual-band 2x2:2 implementations, but even when you get that there’s still a big difference in actual performance, depending on notebook design, drivers, and other “special sauce”. We’ll see this in the charts on the next page, and it’s often more a statement of a particular laptop’s wireless implementation as opposed to representing what you might get from a particular wireless chipset.

In my opinion, the great thing about 802.11ac then is that any product claiming 802.11ac compliance is automatically dual-band. 11ac actually only works on the 5GHz channels, so for 2.4GHz support it’s no better than existing 802.11n solutions, but it’s fully backwards compatible and, as we’ll see in a moment, you really don’t want to use 2.4GHz wireless networking unless you’re primarily concerned with range of the signal. This is a shorter introductory piece, so don’t expect a full suite of benchmarks, but let’s just cut straight to the chase and say that there are a lot of situations in which I’ve found 802.11ac to be substantially faster than 802.11n.

A Quick Test of Real-World Wireless Performance
Comments Locked

139 Comments

View All Comments

  • Modus24 - Tuesday, July 9, 2013 - link

    I have an RT-AC66U and I get a ~250 Mbps file transfer rate from 20 feet away using 5 GHz 802.11n. I get ~500 Mbps between floors using an 802.11ac bridge.
  • DroidTomTom - Tuesday, July 9, 2013 - link

    What are you using for the client adapter? Those are great speeds. I can not get my IntelCentrino Advanced-N 6235 client to connect faster than 133Mbps to my Linksys EA4500 N900 host router. Let alone attain decent sustained speeds. Even living in the dead of nowhere.
  • Streetwind - Tuesday, July 9, 2013 - link

    Honestly these test numbers are apalling. In the home theater test, even the 5 GHz ac adapters failed to match 100 Mbps wired ethernet except for the best of the best implementations - and we've been on gigabit ethernet for how many years now? I'm intentionally not looking at the 5 feet results, because those are often completely unrealistic when you try to provide wireless coverage in your entire house. In fact, I even think somewhere around 30-40 feet would be more representative than 20, considering Jarred is stating here that 50 feet isn't even making it to his driveway.

    Another thing I've always wondered about and never saw tested anywhere is the stability of the connection quality. Wireless transfer rates can often fluctuate wildly even when both endpoints are completely stationary, and even moreso when one of them moves. A mean time taken to transfer a file doesn't tell nearly the entire story about connection quality and latency. Those are a big deal for things like VoIP, content streaming and online gaming, for example. Jarred, I don't suppose you could screenshot some of those pretty graphs that Windows 8 draws while copying files...?
  • JarredWalton - Tuesday, July 9, 2013 - link

    I'll have to look into making more detailed graphs for the full review. Yes, throughput fluctuates a bit, and the slower connections tend to fluctuate even more. The AC Bridge does tend to be far more consistent in throughput than the other adapters. As for the 50 foot problem (sorry, that's 15.24m for the international audience...), that was more specifically a problem with the devices than with WiFi in general. I have one WiFi device (single stream 2.4GHz 802.11n) that can actually get amazing coverage. It lacks throughput, but for moderate traffic I think I can get well over 300 feet (100m) without dropping connectivity.
  • Urbanos - Tuesday, July 9, 2013 - link

    please add netgear, asus and engenius AC routers to your mix if you are going to do some reviews... and anyone else who might have them out by now/then. it would be good to offer some comparisons on range and performance from the low to the high end, as well as some tasks that traditionally weren't accessible or usable via wifi b/g/n that should be possible now via AC.
  • JarredWalton - Tuesday, July 9, 2013 - link

    I will have to see who is interested in sending routers for review -- would like to get an AirPort Extreme tossed into the mix as well, but TBH I'm not interested in buying any of the routers with my own money. :-)
  • ikjadoon - Tuesday, July 9, 2013 - link

    Well, then, this suggestion might be pointless. But, I have a heard of a number of system administrators recommend Ubiquiti routers as great medium-business routers. It's a hefty $340 for their AC-router, the UniFi, but if you're going through a handful of routers in a few years, maybe it's worth it! :D
  • JarredWalton - Tuesday, July 9, 2013 - link

    Interestingly enough, they just emailed me and asked to send their AC access point. :-)
  • DanNeely - Tuesday, July 9, 2013 - link

    Cool. I'm definitely interested to see if they bring anything to the table beyond enhanced tools for managing a number of access points in a network.
  • miahshodan - Tuesday, July 9, 2013 - link

    I keep reading how great 5ghz is. But the reality in my house I often can't connect at all on 5ghz while 2.4 is fine. I think it all comes down to environment. For larger houses in non-crowded areas 2.4 ghz can be superior. Hopefully AC will help with the 5ghz range. You almost need two or three test area scenarios to account for different distances, construction techniques, wireless traffic scenarios etc.

Log in

Don't have an account? Sign up now