Intel’s SSD 510 Powered by Marvell

At IDF 2008 Intel presented a session that discussed its SSDs and what made them better than the competition. Allow me to quote, ahem, myself:

“Intel's SSD design attempts to be different in the three key areas that determine SSD performance: Flash, Firmware and Controller.”

and

“The Firmware and Flash-to-SATA controller are both made by Intel, whereas most SSD makers use off the shelf components and FPGAs for their designs. Intel claims that its expertise in microprocessor and platform design allows for much higher levels of performance out of its SSDs.”

Now allow me to contrast what Intel told me at IDF 2008 with the reality of today in 2011.

The “G3” we’ve all been waiting for will still come. That’ll be Intel’s first 25nm SSD and it should carry specs similar to what we already published. However the focus of the drive will be the mainstream. To take care of the high end Intel created a new drive: the Intel SSD 510 (codename Elmcrest) and it uses a Marvell 9174 6Gbps controller.


Intel's SSD 510 based on Marvell's 88SS9174 controller

Everyone has access to the same NAND that Intel does, but in the past it was controller microarchitecture and firmware that gave Intel the edge. With the 510, the advantage has been reduced to just firmware.

The Marvell 9174 is the same controller Micron uses in its C400 and the same controller in Corsair’s Performance Series 3 SSDs. In fact, I recently received a Corsair P3. Pop off the lid and you’ll see the very same controller Intel is using in the 510:


Corsair's P3 SSD, note the controller similarity

Talk to SandForce and they’ll tell you that the controller itself doesn’t matter - it’s the firmware that matters the most. That’s definitely true to an extent, although I can’t help but feel like you need both microarchitecture and firmware to get the absolute best performance.

Although the controller is sourced from Marvell the firmware and validation are entirely Intel’s. As a result you shouldn't expect the 510 to perform identically to other Marvell based drives.

Intel is also quick to point out that despite using a 3rd party controller, the 510 has to go through Intel’s rigorous validation and testing. Reliability and quality should be no different than any other Intel SSD.

I asked Intel if this was a permanent thing - if we should always expect it to license controllers from third parties for its high performance SSDs. Intel responded by saying that the Marvell controller made sense given the hole in its roadmap, however this is not a long term strategy. While we may see more Intel SSDs based on 3rd party controllers, Marvell’s controller is not a permanent resident in Intel’s SSD roadmap - it’s just here on a student visa.

Paired with the Marvell controller is a 128MB Hynix DDR3-1333 SDRAM. This is technically the largest DRAM to appear on an Intel SSD to date. Even the old X25-M G2 only had a 32MB DRAM on board.

The 510 currently only supports 34nm Intel NAND rated at 5,000 p/e cycles. There are two capacities offered: a 120GB and a 250GB. Intel sent us the 250GB version which has 256GB of 34nm Intel NAND spread out across 16 NAND packages. That’s 16GB per package and 4GB per 34nm die.

Remember the GiB/GB conversion math that’s used to mask spare area in SSDs. With 256GiB of NAND on board and 250GB of storage area promised by the drive, there’s actually only 232.8GiB of user addressable space on the 250GB drive. This puts the percentage of spare area at 9%, an increase over the 6.8% spare area common on the X25-M.

The 120GB drive has even more spare area than the 250GB drive. With 128GB of 34nm NAND on board, the 120GB Intel SSD 510 has 111GiB of user addressable space for a total spare area of 12.7%.

Intel’s rated performance for the SSD 510 is as follows:

Intel SSD Comparison
  X25-M G2 160GB SSD 510 120GB SSD 510 250GB
NAND Capacity 160GB 128GB 256GB
User Capacity 149GB 111GB 232GB
Random Read Performance Up to 35K IOPS Up to 20K IOPS Up to 20K IOPS
Random Write Performance Up to 8.6K IOPS Up to 8K IOPS Up to 8K IOPS
Sequential Read Performance Up to 250MB/s Up to 400MB/s (6Gbps) Up to 500MB/s (6Gbps)
Sequential Write Performance Up to 100MB/s Up to 210MB/s (6Gbps) Up to 315MB/s (6Gbps)
Price $404 $284 $584

Ironically enough the SSD 510 fixes the X25-M’s poor sequential performance but trades it for lower random performance. On paper the 510’s random performance is decidedly last-generation. And honestly the rated performance of the 120GB isn’t particularly interesting. The 120GB drive will have fewer NAND die available, and SSDs achieve their high performance by striping data requests across as many NAND die as possible - hence the lower performance specs.

Pricing is set at $284 for the 120GB drive and $584 for the 250GB drive. Intel’s SSD 510 is available today and Newegg marks the two up to $315 and $615 respectively.

The Bundle

Intel sent over the desktop installation kit bundle for the 510. Included in the box is a 3.5" adapter kit, a 6Gbps SATA cable (3Gbps cables of sufficient quality should work fine though) and a 4-pin molex to SATA power adapter:

The 510 also works with Intel's SSD Toolbox, which makes tasks like secure erase super simple:

Introduction A Word on Reliability & The Test
POST A COMMENT

128 Comments

View All Comments

  • Squuiid - Friday, March 4, 2011 - link

    +1
    They were the 1st of this next gen to be available, yet NOBODY has reviewed them.
    Based on the 2nd Gen Marvel controller I believe, a' la C400.
    Reply
  • Luke212 - Friday, March 4, 2011 - link

    Anand,

    I am looking to implement SSDs in Application servers and I need to know how they go in Raid 1 over time. Noone seems to test this! So I am stuck with magnetic drives!!
    Reply
  • sean.crees - Friday, March 11, 2011 - link

    Anyone else notice the Samsung 470 near or at the top of most benchmarks on a 3gb controller? Is this the SSD in current Macbook Pro's? I havn't seen a review posted to Anandtech about this specific device. Reply
  • daidaloss - Tuesday, March 15, 2011 - link

    I'm curious as to how does this SSD drive stacks up when compared to this unit SATA2 DDR2 HyperDrive5 from http://www.hyperossystems.co.uk/.
    Maybe sometime in the future, Anand will consider this RAM drive.
    Reply
  • tygrus - Wednesday, May 11, 2011 - link

    Not specific to Intel 510 SSD:
    Sequential performance after several full disk GB rewrites ?

    The LBA remapping for wear levelling must make more of the disk look random (not sequential) after every block has been re-written several times. It's a torture test to see how it can handle reading large files that have been spread over several non-sequential NAND blocks. Or does it not matter as much because the controller can optimise access to several NAND dies at once? Does it only remap 512KB at a time or does the 512KB blocks have non-sequential 4KB LBA's written to them?

    Does SSD performance approach random R/W performance after long term heavy use ?
    Reply
  • gaffe - Tuesday, October 11, 2011 - link

    Just an anonymous tip. I happen to know this data is wildly inaccurate because my friend is a reliability engineer at a major company.

    WHY DON'T YOU DO A SMALL RELIABILITY TEST OF YOUR OWN TO SEE FOR YOURSELF HOW UNLIKELY IT IS THAT THIS DATA IS ACCURATE.

    It seems you have tested probably 20 SSDs for your reviews. So, how many of them have failed on you during testing? How many during the course of the past 3 years? What's the failure rate average across all manufacturers?

    Even though manufacturers probably send you their best tested units for review, and your sample size is small, etc. I am willing to bet you REAL MONEY that the failure rate will be more than 3% even in a sample size of just 20.

    How about we buy 20 SSDs today and in 3 years see who is right, loser buys em all, winner gets em (you can keep the failed ones)?
    Any takers?
    Reply
  • gaffe - Tuesday, October 11, 2011 - link

    Oh and P.S.

    You forgot to mention above that failure rates are generally PER YEAR. So that's a 3% chance it fails EACH YEAR. And it's still wrong by double or triple (it's closer to 9%).
    Reply
  • gaffe - Tuesday, October 11, 2011 - link

    Sorry to keep piling on, but it bothers me so much that this inaccurate data is out there and people are believing this that I also want to mention this data does not even say which models were tested. This is probably all enterprise grade drives that does not even apply to consumers that are reading this article, and, as I said above, it's STILL INACCURATE! Reply

Log in

Don't have an account? Sign up now