ASUS Zenbook 14 OLED UX3405MA: Encoding Performance

Typically, in previous notebook reviews, we lump basic compute and general performance in with our system performance summary. As we advance into 2024 and beyond, we're splitting the sections up with more data points and workload testing. This gives a more holistic view of performance, not just from a usage standpoint, such as storage and battery, but also from memory and other compute-related variables that can substantially affect compute performance.


CPU-Z Screenshot of the Intel Core Ultra 155H processor

For this review, we have included the AMD Ryzen 9 7940HS, which includes the same Radeon 780M integrated graphics, along with the Ryzen 5 8600G, which uses the AMD Phoenix mobile architecture but is adopted for desktops. This allows us to show more data points for our review of Intel's Meteor Lake-based Core Ultra 7 155H to see where performance lies.

Despite including AMD's Phoenix-based Ryzen 8000G APUs in our results, as we expand our list of notebooks tested, we'll have more effective and comparable data points in the future. To add more reference, all of the chips have been tested with Windows 11 22H2.

Encoding Performance

(3-1) WebP2 Image Encode: Q7, CE7

(3-1b) WebP2 Image Encode: Q100, LC

(3-2): SVT AV1 Encoding: Bosphorus 1080p, Fastest Preset

(3-2b): SVT AV1 Encoding: Bosphorus 4K, Fastest Preset

(3-3) SVT AV1 Encoding: Bosphorus 1080p, Mid-Speed Preset

(3-3b) SVT AV1 Encoding: Bosphorus 4K, Mid-Speed Preset

(3-4) Dav1d AV1 Benchmark, Summer Nature 4K

(3-5) SVT-HEVC Encoding: Bosphorus 1080p, Higher Quality

(3-5b) SVT-HEVC Encoding: Bosphorus 4K, Higher Quality

(3-9) 7-Zip 22.01 - Compression Rating

(3-9b) 7-Zip 22.01 - Decompression Rating

Looking at how well the Intel Core Ultra 7 155H processor within the ASUS Zenbook 14 OLED UX3405MA performs in encoding tasks, we can see that it's a mixed bag. It shows competitive performance in our WebP2 image Encode test with maximum quality and strong SVT AV1 encoding performance at 1080p on the fastest preset, but things in the other tests aren't as favorable.

Even compared to the MSI Prestige 13 Evo A1MG with the same Core Ultra 7 155H processor, the ASUS Zenbook 14 OLED UX3405MA lags behind in our 7-Zip compression and decompression tests, as well as the Dav1d AV1 benchmark compared to the other chips on test. Even looking at the results of the MSI model, encoding performance with the Intel Core Ultra 7 155H is a little underwhelming compared to the Ryzen 9 7940HS.

ASUS Zenbook 14 OLED UX3405MA: Power, System & Storage Performance ASUS Zenbook 14 OLED UX3405MA: Rendering & Simulation Performance
POST A COMMENT

69 Comments

View All Comments

  • Gavin Bonshor - Friday, April 12, 2024 - link

    I refer to it as a major gain; the other victories weren't huge. That was my point Reply
  • sjkpublic@gmail.com - Thursday, April 11, 2024 - link

    Comparing the 155H to the 7940HS is apples to oranges. A better comparison would be the 185H. Reply
  • Bigos - Thursday, April 11, 2024 - link

    What happened to SPECint rate-N 502.gcc_r results? I do not believe desktop Raptor Lake is 16-40x faster than the mobile CPUs... Reply
  • SarahKerrigan - Thursday, April 11, 2024 - link

    No, something is clearly wrong there. I deal with SPEC a lot for work and that's an abnormally low result unless it was actually being run in rate-1 mode (ie, someone forgot to properly set the number of copies.) Reply
  • Gavin Bonshor - Friday, April 12, 2024 - link

    I am currently investigating this. Thank you for highlighting it. I have no idea how I missed this. I can only apologize Reply
  • mode_13h - Monday, April 15, 2024 - link

    While we're talking about SPEC2017 scores, I'd like to add that I really miss the way your reviews used to feature the overall cumulative SPECfp and SPECint scores. It was useful in comparing overall performance, both of the systems included in your review and those from other reviews.

    To see what I mean, check out the bottom of this page: https://www.anandtech.com/show/17047/the-intel-12t...
    Reply
  • Ryan Smith - Monday, April 15, 2024 - link

    That's helpful feedback. It's a bit late to add it to this article, but that's definitely something I'll keep in mind for the next one. Thanks! Reply
  • mode_13h - Wednesday, April 17, 2024 - link

    You're quite welcome!

    BTW, I assume there's a "standard" way that SPEC computes those cumulative scores. Might want to look up how they do it, if the benchmark doesn't just compute them for you. If you come up with your own way of combining them, your cumulative scores probably won't be comparable to anyone else's.
    Reply
  • Ryan Smith - Wednesday, April 17, 2024 - link

    "BTW, I assume there's a "standard" way that SPEC computes those cumulative scores."

    Yes, there is. We don't run all of the SPEC member tests for technical reasons, so there is some added complexity there.
    Reply
  • mczak - Thursday, April 11, 2024 - link

    Obviously, the cluster topology description is wrong in the core to core latency measturements section, along with the hilarious conclusion the first two E-cores having only 5 ns latency to each other. (First two threads of course belong to a P-core, albeit I have no idea why the core enumeration is apparently 1P-8E-5P-2LPE.) Reply

Log in

Don't have an account? Sign up now